Chemolithoorganotrophic growth of Nitrosomonas europaea on fructose.

نویسندگان

  • Norman G Hommes
  • Luis A Sayavedra-Soto
  • Daniel J Arp
چکیده

The nitrifying bacterium Nitrosomonas europaea can obtain all its carbon for growth from CO(2) and all its energy and reductant for growth from the oxidation of NH(3) and is considered an obligate chemolithoautotroph. Previous studies have shown that N. europaea can utilize limited amounts of certain organic compounds, including amino acids, pyruvate, and acetate, although no organic compound has been reported to support the growth of N. europaea. The recently completed genomic sequence of N. europaea revealed a potential permease for fructose. With this in mind, we tested if N. europaea could utilize fructose and other compounds as carbon sources to support growth. Cultures were incubated in the presence of fructose or other organic compounds in sealed bottles purged of CO(2). In these cultures, addition of either fructose or pyruvate as the sole carbon source resulted in a two- to threefold increase in optical density and protein content in 3 to 4 days. Studies with [(14)C]fructose showed that >90% of the carbon incorporated by the cells during growth was derived from fructose. Cultures containing mannose, glucose, glycerol, mannitol, citrate, or acetate showed little or no growth. N. europaea was not able to grow with fructose as an energy source, although the presence of fructose did provide an energy benefit to the cells. These results show that N. europaea can be grown in CO(2)-free medium by using fructose and pyruvate as carbon sources and may now be considered a facultative chemolithoorganotroph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Genome of the Ammonia Oxidizing Bacterium Nitrosomonas europaea: Iron Metabolism and Barriers to Heterotrophy

Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source (3). As a nitrifier, it is an important participant in the N cycle, which can also influence the C cycle. The genome sequence of N. europaea has been annotated and consists of approximately 2460 protein-encoding genes (1). We are continuing to use the genome sequence to explore the geneti...

متن کامل

Test Medium for the Growth of Nitrosomonas europaea.

A mineral medium for studying the growth of Nitrosomonas europaea was developed and examined. The medium was defined in terms of chemical speciation by using chemical equilibrium computer models. The medium significantly increased the metabolic activity of the organisms compared with previously developed media, yielding a specific growth rate as high as 3.0 day (generation time, 5.5 h). The spe...

متن کامل

AAU-Specific RNA Cleavage Mediated by MazF Toxin Endoribonuclease Conserved in Nitrosomonas europaea

Nitrosomonas europaea carries numerous toxin-antitoxin systems. However, despite the abundant representation in its chromosome, studies have not surveyed the underlying molecular functions in detail, and their biological roles remain enigmatic. In the present study, we found that a chromosomally-encoded MazF family member, predicted at the locus NE1181, is a functional toxin endoribonuclease, a...

متن کامل

Proton electrochemical gradients in washed cells of Nitrosomonas europaea and Nitrobacter agilis.

The components of the proton motive force (Deltap), namely, membrane potential (Deltapsi) and transmembrane pH gradient (DeltapH), were determined in the nitrifying bacteria Nitrosomonas europaea and Nitrobacter agilis. In these bacteria both Deltapsi and DeltapH were dependent on external pH. Thus at pH 8.0, Nitrosomonas europaea and Nitrobacter agilis had Deltapsi values of 173 mV and 125 mV ...

متن کامل

Effect of Low-Density Static Magnetic Field on the Oxidation of Ammonium by Nitrosomonas europaea and by Activated Sludge in Municipal Wastewater.

Ammonium removal is a key step in biological wastewater treatment and novel approaches that improve this process are in great demand. The aim of this study is to test the hypothesis that ammonium removal from wastewater can be stimulated by static magnetic fields. This was achieved by analysis of the effects of static magnetic field (SMF) on the growth and activity of Nitrosomonas europaea, a k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 185 23  شماره 

صفحات  -

تاریخ انتشار 2003